If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+5c-9=0
a = 1; b = 5; c = -9;
Δ = b2-4ac
Δ = 52-4·1·(-9)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{61}}{2*1}=\frac{-5-\sqrt{61}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{61}}{2*1}=\frac{-5+\sqrt{61}}{2} $
| 7z=8z+10 | | -(3x+7)=-28 | | (x-5)^2=-36 | | 2/3x=138 | | 3x-(x+1)=x+1 | | -3-5=x | | 2n3+4-n2-8n=0 | | 9(y-7)/2=-2y | | 38-4b=18 | | x+9/6=8/3+x-8/2 | | -3(5n-7)=3 | | 9t+6t=300 | | 5-2x=-+9 | | 18=k=30 | | (1+r)^5=1.67 | | 4=4s+16 | | 1.6d=6+d | | 15−2x=3x | | 2/3(6n+15)=-18 | | 8x=4x−32 | | 3x+1=X+9-4x | | x3-x2=294 | | x2+5x+6=0 | | (3x+1)^2-4x(3x+1)=0 | | −6(x+7)=−4x−2 | | 1/2x+1/2x=x-1 | | |3k+9|=24 | | 10(x+5)=-4(x+2)=6 | | 4/5n+6=14 | | 4(9w+2)=6(1+6w)-10 | | 6=5(c-2.2)+10c | | 4-3-x+2=13 |